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Abstract 

The present dynamic Bayesian-learning model frames the problem of a policymaker that, given a socially optimal 

goal to pursue, hardly achieves its goal with precision because regulation effects results from a complex interaction 

between regulation and individual beliefs, compliance costs, and subsequent individual choices. Showing how 

heterogeneous agents decide –time by time–  whether to comply with given rules based on their conjectures, the 

available information, and their private costs, we study the possible conjectural equilibria and prove that the 

policymaker can pursuit optimality by acting on various structural parameters of the model (corresponding to 

various kind of regulatory interventions) to align the conjectural equilibrium level of welfare losses to the optimal 

one. However, the policymaker must be aware that any kind of regulatory intervention implies dynamical effects 

that depend on both people’s conjectures and learning staying behind individual choices. Finally the precise 

achievement of any policy goal cannot be taken for granted, while requiring time and perseverance. 
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1. Introduction 

In order to contrast various negative externalities resulting in social welfare losses, the policymaker typically sets up 

specific rules aimed at reducing their impact. Those rules typically require a sufficient compliance by part of individuals 

to achieve social optimality. However, regulatory compliance is often insufficient and this calls for further initiatives 

aimed at supporting compliance (Posner 1997, Stiglitz 2009, Tummers 2019). Regulatory approaches are various and, 

even when rules are well designed, the policymaker fails to perfectly achieve the wished policy goals (Greenstone 2009, 

Howlett 2019, cp.4; McConnell 2015). The different regulatory outcomes can be partially explained by the fact policies 

interact with individual beliefs and consequent behaviours (Viscusi 2007, Barr et al. 2009, Yan et al. 2020, Gofen et al 

2021). This last point is also empirically and experimentally established by the boundless political economy literature 

(Aghion et al. 2010, Alesina &Giuliano 2015, Ostrom 2005, North 1991). 

There are lot of examples in this regard. The average welfare losses due to behaviour-related diseases (i.e. smoking-

related diseases) can be reduced thanks to individual compliance with healthy practices. Given the insufficient 

compliance rate with healthy practices, some policies can be adopted including prohibitions and restrictions (mandatory 

compliance), nudging and subsidies supporting healthy habits and early diagnosis, informational campaigns, new 

treatments, etc.  The same plocies may lead to different results depending on the targeted populations (Becker & Maiman 

1975, Cleemput & Kesteloot 2002).   

A further example for which spontaneous compliance rates are usually too low and therefore require regulatory 

interventions is that one of natural hazards. Welfare losses due to floods, earthquakes, hurricanes and so on might be 

reduced significantly both by applying proper building techniques and subscribing convenient insurance schemes. 

However, individuals are often under-insured and do not sufficiently comply with building rules. For these reasons, in 

many countries, public authorities aimed at reducing average welfare losses due to natural hazards opt for subsidizing 

or nudging the implementation of appropriate building techniques and provide capped-prize insurances or prescribe 

mandatory insurance (May 2005, Gizzi et al 2021, Gunningham et al. 1998, Wu & Babcock 1999).  

Pollution-related welfare losses might be optimally reduced by a sufficiently high compliance rate with environmental 

regulation. However, individual compliance is often insufficient. Various interventions can help. Scientific and 

technological advancements can reduce welfare losses independently of compliance; nudging, subsidies, and sanctions 

can improve compliance with environmental practices finally reducing the related average welfare losses (Byerly et al. 

2018, Coglianese & Nash 2001, Czaikowski et al. 2017, Kountoris 2022). Similar examples include problems of energy 

shortage and insufficient compliance with curtailment behaviors (Del Rio 2010, Pam & Garmston 2012, Sütterlin et al. 

2011).  

Further examples are related to the average welfare losses due road accidents that can be effectively reduced by a 

sufficient adherence with driving rules and prudential behavior. Nonetheless, the compliance with such rules and good 

behaviors is various and often insufficient to achieve the optimal level of welfare loss reduction. Not surprisingly various 

policies are implemented: sanctions in the case of non-compliance, but also nudging through apps for safe driving, 

subsidies for free rides for drunk drivers and information campaigns to make drivers aware of the risks related to non-

compliance with good practices and rules (Allen et al. 2017, Bradford el al. 2015, Nagler 2013, Sarkar et al. 2005). 
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Even average welfare losses due to tax evasion might fit the model. They can be reduced thanks to a sufficient tax 

compliance (in non-technical sense). Nevertheless, compliance rates are very different across countries and often too 

low with respect to social optimality. Sanctions in the case of non-compliance, nudging like pre-filled tax declarations, 

subsidies like tax discount in the case of early payments, etc. are some examples of policies aimed at reducing the average 

losses due to tax evasion (Coleman & Freeman 1997, Feld & Frey. 2007, Alm 2019). 

Many other examples could be provided for problems whose average impact (average welfare loss) negatively depends 

on the compliance rate of population with rule/good practices, but the latter remains insufficient with respect to the 

achievement of the optimal welfare loss reduction. In these cases various regulatory approaches might be helpful. 

Nonetheless results of policies are various.  

Starting from previous dynamic models (Rampa and Saraceno 2023, Rampa and Saraceno 2016, Bhattacharyya & Bauch 

2010, Coelho & Codeço 2009), we develop a general model framing the problem of a policymaker that, given a socially 

optimal level of welfare losses to pursuit through regulation (Hethcote & Waltman 1973; Fine & Clarkson 1986, Szucs 

2000, Donadel et al. 2021), hardly achieves the regulatory goal with precision because regulation effects results from a 

complex interaction between regulation and individual beliefs, compliance costs, and subsequent individual choices. 

Specifically, we provide a dynamic Bayesian-learning setup with heterogeneous agents that shows how –time by time–  

people decide to comply with given rules aimed at reducing welfare losses based on their conjectures, the available 

information, and their private costs. Due to lack of precise information about the true relation existing between welfare 

losses and compliance, people decide based on the available information and their subjective beliefs. Time by time, 

people update their beliefs based on two common pieces of information communicated by the policymaker: the current 

compliance rate and the current average welfare loss. Then, we study the possible conjectural equilibria, i.e., those 

situations when individual decisions stop adjusting time by time because the learning process comes to an end.  

Results show that that although the policymaker has various regulatory arrows in its quiver, it will hardly hit the target 

precisely. Leaving metaphors asides, the policymaker can pursuit optimality by acting on various structural parameters 

of the model (corresponding to various kind of regulatory interventions) to align the conjectural equilibrium level of 

welfare losses to the optimal one. However, the policymaker must be aware that any kind of regulatory intervention 

implies a dynamics that depends both on people conjectures and on the learning system staying behind individual 

choices. Finally the precise achievement of any policy goal cannot be taken for granted, while requiring time and a 

persistent approach. 

 

2. The Model 

2.1. Setup 

At the beginning of date 0 (time is discrete), a social problem bursts forth. Define 𝜇! as the average welfare loss due to 

that problem, as can be observed at date t.  

Define	𝐵(𝜇) = (1 − 𝜇)" , 0 < 𝑏 < 1 and 𝐶(𝜇) = (1 − 𝜇)# , 𝑐 > 1 as the social benefit and social costs, respectively, 

that are associated with the reduction of 𝜇 (here the time subscript is omitted because not relevant), where parameters 

𝑏	and 𝑐 capture marginal benefits and costs, respectively, of 𝜇 reductions. 
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 𝜇!, can be considered as the main policy target-variable. Clearly, a trade-off exists between social benefits of reducing 

𝜇! —milder consequences for individuals and a lower impact on institutions (health care  and social security systems, 

fiscal system, the environment, etc.) — and social costs to achieve this reduction goal (public expenditure, social security 

costs to support affected people, costs of enforcement and detection, etc.).  

We also assume that average welfare losses 𝜇! can be reduced thanks to the adherence with specific rules by part of 

population. Specifically, there exists a true random relation between 𝜇! and the compliance rate 𝜋! such that 𝜇!~𝑁(𝛼 −

𝛽𝜋!; 1), 𝛼, 𝛽 ∈ (0,1]. Randomness and normality assumption seems to be quite reasonable; the linearity of the mean 

and the unitary variance are chosen for simplicity.  

The parameters 𝛼 and 𝛽 are unknown to individuals. When the problem emerges at the beginning of 𝑡 = 0, the 

policymaker clarifys that some compliance with specific rules can help to reduce welfare losses. At the end of each date 

t, the policymaker also observes 𝜇! and 𝜋! and communicates them to the population.  

Therefore, at each date 𝑡 ≥ 0 people must decide whether to comply with rules possible able to reduce welfare losses 

associated to the problem. Since compliance has temporary effects, at the beginning of each date each individual must 

decide once again. Individuals decide to comply by comparing the expected consequences (average welfare loss) resulting 

from the problem and their own compliance costs.  

The overall population is composed of two components: subpopulation A and subpopulation B. The weight of sub-

population A is 𝛾 ≥ 0.5 and the weight of sub-population B is 1 − 𝛾.  The individual compliance cost is a random 

variable distributed among each population according to a Uniform Distribution of support [0, 𝜃$],𝑖 = 𝐴, 𝐵 and 

	0 < 𝜃% < 𝜃&. 

At 𝑡 = 0, when the problem emerges, given that the true relationship between 𝜇! and 𝜋!  is unknown, people get an 

idea on that relation. In particular, they correctly assume that the average welfare loss is a random variable with a given 

mean 𝜇!' and unitary variance. However, given that the structural parameters (𝛼, 𝛽) are unknown, individuals formulate 

subjective priors on the parameter that determine 𝜇!' 	. In particular, the prior on (𝛼, 𝛽) for subpopulation i is a normal 

bivariate, and the mean and precision parameters of this subjective distribution at date 0 are vector  z$,) = A
𝛼$,)
𝛽$,)B	 and 

symmetric “precision”1 matrix H$,) = C
𝜂$,*,) 𝜂$,*+,)
𝜂$,*+,) 𝜂$,+,) E, 𝑖 = 𝐴, 𝐵. 𝛼$,) and 𝛽$,) are the initial parameters conjectured 

by subpopulation i on 𝛼 and 𝛽, respectively; 𝜂$,*,), and 𝜂$,+,) are positive, whereas we assume 𝜂$,*+,) = 0 because 

people have no reason to hypothesize any specific initial value for co-variances. Since at the beginning of date t, 

individuals do not know the actual 𝜋! when formulating their expectation 𝜇!' , they provisionally assume that the 

compliance rate remains constant from t-1 to t. Therefore, at t=0 subpopulation i expects  𝜇$,)' = 𝛼$,) − 𝛽$,)𝜋). 

In general, define hyperparameters 𝛼$,!, 𝛽$,! as the mean hyperparameters, while 𝜂$,*(+),! as the precision hyperparameters of 

the model. Therefore, at each date they expect 𝜇$,!' = 𝛼$,! − 𝛽$,!𝜋!./. 

 
1 Precision (or robustness) of the subjective prior is related to the inverse of the variance: indeed the matrices 𝐇!,# are the inverse of the variance-
covariance matrices conjectured by the populations. 
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At the end of each date t, once the individual compliance decisions have been taken, people learn 𝜇! and 𝜋! and 

formulates a posterior along a Bayesian learning process, by updating the prior based on 𝜇! and 𝜋!. The posterior at 

date t becomes the prior for date t+1. 

2.2. Learning, conjectural equilibria, and optimality 

The individuals of each subpopulation decide to comply  at the beginning of each date t if and only if: 𝜇!' > 𝜃$ . Given 

Assumption 5, the share of each subpopulation who decides to comply is:  

𝜋$,! =
*!,#.+!,#0#$%

1!
, i=A, B                                                             (1)  

The overall compliance rate at date t is: 

 𝜋! =
2
1&
F𝛼%,! − 𝛽%,!𝜋!./G +	

/.2
1'
F𝛼&,! − 𝛽&,!𝜋!./G                                           (2)  

corresponding to the observed mean: 

 𝜇! = 𝛼 − 𝛽 C 2
1&
F𝛼%,! − 𝛽%,!𝜋!./G +	

/.2
1'
F𝛼&,! − 𝛽&,!𝜋!./GE                             (3) 

Now, let us define the vector x3! = [1 −𝜋!], that is, the vector of the “regressors” of the equation 𝜇$,!' = 𝛼$,! − 𝛽$,!𝜋! 

that people would conjecture after being informed of 𝜋!, given their previous prior. Under our assumptions, the updated 

hyper-parameters are as follows (see De Groot 1970): 

z$,!4/ = z$,! + IH$,! + x!x3!J
./Ix!F𝜇! − x3!z$,!GJ                                      (4)  

The final parenthesis contains the forecasting error for subpopulation i, 𝑒$,! ≡ F𝜇! − x3!z$,!G, given that 𝜇! is the true 

average welfare loss at the end of time t, communicated by the PA together with the actual 𝜋!, while x3!z$,! is the one 

that would be computed by population i on the basis of its prior and of the actual 𝜋!. Observe that z$,!4/ = z$,! if and 

only if the individuals of subpopulation i learns from the PHA that 𝜇! = x3!z$,!, that is, if the forecast 𝑒$,! error is null. 

On the other side, because the precision matrix grows over time, the strength of the correction mechanism reduces in 

time. Therefore, the updating process becomes increasingly slower. 

Now, we introduce the concept of conjectural equilibria in order to study whether and how the updating process can 

reach a position of rest, so that the compliance rates stabilize to certain levels (Hahn 1977, Fudenberg-Levine 1993, and 

Dekel-Fudenberg-Levine 2004). We define a conjectural equilibrium (CE, hereafter) as a configuration of subpopulations’ 

hyperparameter such that, if the learning dynamical system is set in one of these positions, it stays there except when a 

further shock perturbs the system. In such situations, people (of both subpopulations) have no reason to modify their 

beliefs and the related compliance decisions.  

Since the CE definition implies that equilibrium variables remain constant in time, we omit the time subscripts. From 

the definition above and from equations (2) and (4), the CE condition can be represented by the following system: 

M

𝛼% − 𝛽%𝜋 = 𝛼 − 𝛽𝜋		
𝛼& − 𝛽&𝜋 = 𝛼 − 𝛽𝜋			
𝜋 = 𝛽 C 2

1&
(𝛼% − 𝛽%𝜋) +	

/.2
1'
(𝛼& − 𝛽&𝜋)E	

     (5) 
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By solving (5), we obtain the CE average welfare loss and compliance rate: 

𝜋56 =
7 (
)&
4%$()'

8*

/47 ()&
4%$()'

8+
																							𝜇56 = 𝛼 − 𝛽

7 (
)&
4%$()'

8

/47 ()&
4%$()'

8+
𝛼      (7) 

By inspecting (7), we can conclude that the precise location of 𝜋56 and 𝜇56 does not depend on the subpopulations’ 

conjectures (priors). There is a unique equilibrium compliance rate-welfare loss couple depending only on the structural 

parameters.  

In spite of this uniqueness result, things are quite different as regards the configuration of the CE conjectures of the two 

subpopulations. Indeed, by replacing from (5), we are able to conclude that the CE mean hyperparameters of each 

subpopulation are characterized by the relations 𝛽56,$ =	
**+,!.*
0*+

+ 𝛽	𝑖 = 𝐴, 𝐵. Hence, we observe that there exist a 

doubly-infinite set of quadruplets of hyperparameters that are compatible with CE. More technically, we have a two-

dimensional CE manifold in the four-dimensional space of the subpopulations’ mean hyperparameters. The infinity of 

possible CE situations implies that the two subpopulations end up, in equilibrium, with different interpretations of the 

steady state: even if they correctly guess the local relationship between compliance rate and welfare loss, they envisage 

different relationships between the two variables. It is even possible that one subpopulation conjectures a positive 

relationship, meaning that they believe that complying with good practices/rules results in a further burdensome source 

of loss. Said differently: given an exogenous change in the overall compliance rate, the two subpopulations predict 

different (possibly, quite different) changes in the average welfare loss.  

The policymaker is now able to derive the 𝜇56 and compare it with the socially optimal level of 𝜇∗. The latter can be 

derived by trading off social benefits and costs of reducing average welfare losses. The socially optimal average welfare 

loss µ∗ must satisfy the usual first-order condition 𝐵3(𝜇∗) = 𝐶′(𝜇∗), 0 < 𝜇∗ < 1. In particular, given the assumed 

functional forms, the socially optimal average welfare loss is 𝜇∗ = 1 − P"
#
Q

%
,$- 	 ∈ (0,1). Clearly, the socially optimal 

welfare loss may differ from the existing CE welfare loss. The PA interested in aligning the 𝜇56 to 𝜇∗ must be aware 

that only shocks affecting the structural parameters can be effective to achieve the purpose. loss do not depend on 

welfare loss reduction and can be simply added as an additional fixed cost to 𝐶(𝜇). 

In the next section we will consider the impact of changes in structural parameters aimed at realigning 𝜇56 to 𝜇∗. 

2.3. Effects of changes in structural parameters and dynamical implications 

In order to appreciate the impact of changes in the structural parameters on 𝜇56 we compute the elasticity of 𝜇56 with 

respect to each policy parameter. The elasticity is the ratio of the percentage variation in 𝜇56 and the percentage variation 

in the structural parameter. The elasticities provided below describe the percentage average variation in the policy target 

due to a one per cent variation (increase or decrease, depending on the policy) in a given policy parameter.  

𝜀:*+,* =
;:*+
;*

*
:*+

= 1, positive and unitary. 

𝜀:*+,+ =
;:*+
;+

+
:*+

= − +<1&.2(1&.1')=
1&1'4+<1&.2(1&.1')=

 negative and its absolute value is smaller than 1. 
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𝜀:*+,1& =
;:*+
;1&

1&
:*+

= +21'
1&1'4+<1&.2(1&.1')=

 positive and smaller than 1; 

𝜀:*+,1' =
;:*+
;1'

1'
:*+

= +(/.2)1&
1&1'4+<1&.2(1&.1')=

 positive and smaller than 1; 

𝜀:*+,2 =
;:*+
;2

2
:*+

= − +2(1&.1')
1&1'4+<1&.2(1&.1')=

 negative and its absolute value is smaller than 1. 

Looking at the sign of the elasticities,  we observe that when 𝜇56 < 𝜇∗, regulation can intervene by decreasing 𝛼 and 𝜃$ 

or increasing 𝛽	and 𝛾. Vice versa, when 𝜇56 > 𝜇∗interventions go in the opposite direction.  

Furthermore, the higher impact (not surprisingly) is guaranteed by changes in 𝛼. Note that 𝜀:*+,* > S𝜀:*+,+S >

𝜀:*+,1& > 𝜀:*+,1' > S𝜀:*+,2S where the last inequality is verified for (/.2)
2

>	1&.1'
1&

.	

Comments in a narrative form must be added here. Add an explanation describing the type of policies affecting the 

structural parameters in the desired direction. 

Now, in order to assess the dynamical implication of actions changing the structural parameters and finally moving the 

system towards a new CE, observe that the dynamical system whose stability properties we wish to examine is defined 

by equations (2) and (4), coupled with the formulation of the forecasting errors: therefore, five variables are involved. 

Defining the vector 𝐲! ≡ F𝛼%,! , 𝛽%,! , 𝛼&,! , 𝛽&,! , 𝜋!G, we have the following formal definition of our discrete-time 

dynamical system: 

𝐲! = 𝐹(𝐲!./)      (8) 

The system of equations (8), besides being five-dimensional, is non-linear; hence, analyzing its global properties is quite 

difficult. Therefore, we propose to study the local stability of CEs. Following Gandolfo (1980), this requires computing 

the Jacobian matrix of system (8) evaluated at a CE that contains the partial derivatives of each variable at date t with 

respect to all variables at date 𝑡 − 1. In our case, it is a 5x5 matrix.  Then, we study the eigenvalues of this matrix. The 

characteristics of the eigenvalues determine how the variables move after a tiny displacement from the CE at which the 

Jacobian and its eigenvalues are evaluated (details will be provided in the Appendix).  

Since the analytical study of the relation between the eigenvalues and the structural parameter turns out to be quite 

difficult, we resort to numerical computations in order to obtain the time of convergence (TOC, hereafter) associated with 

different parameter combinations. The TOC is measured in terms of how many periods are required in order that a 

shock is reduced to 5% of its initial amplitude.  The computation program (available upon request) is implemented by 

means of the open-source GNU Octave language (Eaton-Bateman-Hauberg-Wehbring 2023). 

The TOC is quite sensitive to parameter changes. Consider that a positive TOC associated with each CE shows how 

rapidly the variables converge to that CE if they are slightly displaced from it. On the contrary, a negative TOC means 
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divergence (the system would converge if it moved backwards in time). A lower positive TOC means faster convergence, 

while a lower negative TOC indicates slower divergence.  

In Figure 1 we plot the stability of CEs, measured by the TOC, against different parameter values. This is done for 

different scenarios (different lines in the same graph, parameters are provided in the caption). As regards the first five 

graphs in Figure 1, we see that increases either in a or in 𝜃$ lead to higher stability or lower instability (decreasing TOC) 

in all possible scenarios. Vice versa, higher values of b and g  induce lower stability or higher instability (increasing TOC) 

in all scenarios. On the other hand, the last graph in Figure 1 shows clearly  that higher initial precisions (matrices H$,)) 

cause a more sluggish learning rate, hance implying a longer TOC. 

Therefore, we are able to conclude that changes in structural parameters reducing 𝜇56 tend to push in the direction of 

slower convergence/faster divergence. Vice versa, changes in structural parameters augmenting 𝜇56 are associated with 

faster convergence/slower divergence.  

Concluding, when structural parameters change, not only the system shifts towards new CEs, but also the latter are 

characterized by different stability properties. In particular, some changes might lead to a longer convergence 

time/shorter divergence time. This must be very clear to the policymakers intervening on parameters to the end of 

reducing the average severity of a vaccinable disease. Each intervention should be carefully evaluated not only for its 

capacity to achieve a new desirable CE, but also in terms of its dynamic effects. 

 

3. Conclusions 

The policymaker can pursuit optimality by acting on various structural parameters of the model (corresponding to 

various kind of regulatory interventions) to align the conjectural equilibrium level of welfare losses to the optimal 

one. However, the policymaker must be aware that any kind of regulatory intervention implies dynamical effects 

that depend on both people conjectures and learning staying behind individual choices. Finally the precise 

achievement of any policy goal cannot be taken for granted, while requiring time and perseverance. 

[To be completed] 
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FIGURE 1 Time of convergence (TOC) against different parameters, under various scenarios. 

 

   

  

 
Baseline:     𝛼 = 0.9, 	𝛽 = 0.5,	𝜃$ = 1, 𝜃% = 2, 𝛾 = 0.8    
Low 𝛼:      𝛼 = 0.5, 	𝛽 = 0.5,	𝜃$ = 1,  𝜃% = 2, 𝛾 = 0.8,  
High 𝛽:     𝛼 = 0.9, 	𝛽 = 1,	𝜃$ = 1, 𝜃% = 2, 𝛾 = 0.8  
Similar 𝜃! : 𝛼 = 0.9, 𝛽 = 0.5,	𝜃$ = 1, 𝜃% = 1.1, 𝛾 = 0.8  
Low 𝛾:      𝛼 = 0.9, 	𝛽 = 0.5,	𝜃$ = 1, 𝜃% = 2, 𝛾 = 0.5 
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Proofs and complete simulations will be provided here. [To be completed] 

 


