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Abstract

We develop a model in which a briber decides on an optimal sched-
ule of bribing to the governing party in a bipartisan system. Detected
corruption increases voters�resentment, while periods without corruption
lowers resentment. Resentment increases the risk of political overturn,
hence rising the minimum acceptable bribe. The main assumption is that
the briber�s discount rate is higher than the rate at which resentment
diminishes when there is no corruption. The optimal schedule describes
cycles alternating periods of bribing with periods of no corruption i¤ there
is a resentment level at which bribing gives no positive instant gain to the
briber.
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1 Introduction

We present a theoretical model with the purpose of characterizing dynamic
patterns of corruption. The model incorporates standard elements in political
economy such as possible turnovers in a bipartisan system, and a briber who
captures the ruling party in search for a rent. Voters�attitude is summarized
by their resentment against repeated uncovering of corruption events.
Resentment grows or decreases depending on the amount of detected cor-

ruption cases. Resentment increases the peril of electoral turnover, making
corrupting the governing party more expensive for a briber.
In such setup, we identify a clear-cut pattern in the dynamics of corruption.

If there is a level of resentment that makes bribing not worthwhile with respect
to the briber�s instant payo¤, then the optimal pattern of corruption describes
repeated cycles of corruption activity and inactivity. If bribing generates instead
positive instant returns to the briber regardless the level of resentment in the
society, then the optimal bribing schedule describes no cycles. In this latter
case, corruption activity initializes at some optimal moment in time and then
it never stops.
The calculation of the optimal bribe, whenever the briber decides to be ac-

tive, is based on the model by Shapiro and Stiglitz (1984) for the labor market.
In that paper, there are two states for the worker: employed and unemployed.
There are also two strategies: shirking and paying the required e¤ort. Analo-
gously, our model has two states for a party: in charge or in opposition. There
are two strategies: accepting bribes and not accepting them. The briber plays
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the role the �rm does in Shapiro and Stiglitz, with the di¤erence that, in our
model, the briber faces no competion. Or, in other words, the briber acts as a
principal in a mechanism, allowing her to capture the ruling party in exchange
of its minimum acceptable bribe.
The paper is structured as follows. The remaining parts of this Section 1

analyze evidence and related literature. Section 2 introduces de model. Section
3 solves for the optimal bribe when the briber is active. Section 4 solves for
the optimal bribing schedule. Section 5 summarizes and discusses a possible
future extension. An Appendix presents proofs of instrumental results used in
the main derivations.
Literature
Andersson (2003) estimates that the impact of corruption on political sup-

port towards the government is negative and signi�cant, hence validating one of
the key state variables in our model, namely anger,or animosity against the rul-
ing party. Our model, for the sake of being parsimonious, does not include the
subtleties of partisanship, which shades the intensity of such negative impact
on political support.
Bicchieri and Du¤y (1997) develop an interesting theory of corruption cyclic-

ity. The idea is as follows. The governing party has amassed a certain amount of
resouces from a previous period of honest management. At some point, it is op-
timal to start illegally assigning those resources, if the bene�tted organizations
are able to provide votes to the ruling party, which the party needs to ensure
reelection. When resources are depleted, this mechanism crumbles, giving rise
to a new period of honesty.
In a similar fashion, Feitchinger and Wirl (1994) construct a model in which

a politician must �nd her optimal intertemporal path, when her utility depends
on 1) the gains obtained through corruption, and 2) the reputational loss due to
corruption uncoveries. Cyclic variations in the intensity of corruption persist,
with unstable cycles arising when the second element in the politician�s utility
function has low enough importance. This is, to our knowledge, the theoretical
model that most resembles ours.
There are two elements we wish to point out here. Ours is a model in

which bribers represent the elite who is able to set the rules of the mechanism.
Political parties are passive agents who simply accept of reject bribes. This
active role for bribers is a distinctive element of our model in the literature on
corruption cycles. We regard our model as complementary to previous literature.
Even in (democratic) societies where politicians are easily captured by bribers,
corruption cycles become a possible outcome.
However, the second point we rise here is that, even with these similarities,

testable predictions di¤er. In Feitchinger and Wirl, su¢ ciently high tolerance
towards corruption (i.e. lower reputational e¤ects) yield unstable cycles. Our
model, in contrast, predicts no cycles in such more extreme cases.
Dawid and Feichtinger (1996), analyze an optimal path of corruption in-

tensity for a bureaucrat that is a¤ected by reputational loss. Interestingly,
non-repelling paths point towards extreme limits, where corruption is either
maximal or nonexistant. Although the paper focus on the limit level of corrup-
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tion, there are interesting dynamics in the the optimal path. In a linear utility
setup, corruption intensity changes are abrupt, hence alternating from maximal
to minimal corruption regimes.
Rinaldi, Feichtinger and Wirl (1998) explore a more �exible dynamic model

not involving the calucaltion of an optimal path. They match the parameters
of the model in order to �t the history of corruption in Italy since 1948. States
variables are a) support to politicians (popularity/reputation), b) hidden assets
used in corrupted activies, c) investigation e¤ort. The model might yield a
"weak control system", describing an in�nite cycle that follows the following
stages: 1) increase of popularity with low corruption and low investigation e¤ort,
2) e¢ cient government, 3) rise of corruption and cumulation of hidden assets, 4)
decline of popularity and increase in investigation e¤orts, 5) depletion of assets,
less corruption and decline in investigation e¤orts, and 6) stagnation (low values
for all state variables.)
Corruption has also been modelled as the cooperation/defection dilemma we

�nd in games such as the paradigmatic prisoner�s dilemma. Recently, Lee et al.
(2019) take an evolutionary game theory approach with several strategic traits
combining altruism/egoism with optimism/prudency. Computations result in a
cycle of honest and corrupt umpires.
Lastly, there is a subset of literature devoted to the connection between

corruption and the political election cycle. Intuitively, following the idea of de-
mocratic accountability, the months before important elections should be char-
acterized by a more prudent behavior, with less corruption. Nevertheless, this
argument is not so clear. Bribers would also want to commit the politicians
immediately before the election takes place, while politicians may need funds
for their electoral campaigns to be e¤ective. Figueroa (2020), for the case of
an uncovered corruption network in Argentina, �nds bribes to be signi�cantly
higher two weeks before- than two weeks after the election. Cooper (2021) �nds
similar results for the case of African elections in democratic regimes.

2 The model

We construct a continuous time model. In each moment t � 0, a briber has an
instant rent r to make though an illegal favorable decision from the governing
party. The briber decides whether to bribe, and by how much, the party in
o¢ ce at time t, in order to obtain the rent r. We denote such bribe with b(t).
The ruling party simply decides, whenever a bribe is o¤ered, if it accepts the
bribe or not.
When bribing is undetaken, there is an instant probability � it is detected

by judiciary authorities. Such detection is rendered public to the ruled citizens.
Since time is continuous, a time span of corruption activity of lenght 1 will be
detected in a portion � and remain undetected in a portion 1 � �. Detection
implies a penalty for both the ruling party and the briber: not only no bribe or
rent is perceived but both agents must pay a penalty equal to a proportion s of
the intended rents (moreover, the paid bribe is a sunk cost for the briber.)
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Citizens summarize their sentiments about the political system through a
resentment variable �(t), with �(0) = �0 > 0. The dynamics of �(t) are as
follows: d log �(t)

dt = ! > 0 when corruption is detected at time t, d log �(t)
dt =

�� < 0 when corruption is not detected. Let ' = �! � (1 � �)� denote the
expected increase rate of resentment when the ruling party is corrupt at time t.
The political system is bipartisan. There is a probability per unit of time

that the governing party is overturned by the competing party. Such probability
per unit of time is the sum of two elements: � > 0 which is exogenous, and, only
in the event corruption has been detected, �(t). Being in o¢ ce gives the ruling
party an instant payo¤m > 0. Only the governing party can receive bribes.
Political parties discount future payo¤s at rate � > 0. The briber discounts

future payo¤s at rate ~� > 0.
We assume that ~� � �. This is the main assumption of the model to make

it tractable. This assumption means that the briber discounts future payo¤s at
a higher rate than the one at which voters could decrease their resentment. A
brief discussion on such assumption is included in Section 5.
We solve for the optimal bribing schedule from the point of view of the

briber, who aims to maximize the present value of her �ow of payo¤s on an
in�nite horizon.

3 Minimum acceptable instant bribes

In this section, for the sake of notational simplicity, we suppress the notation
regarding time.
A ruling party that does not accept a bribe b obtains an instant payo¤m. If

the bribe is accepted, her instant payo¤ becomes ~m = m+ (1� �)b� �sr. The
briber can commit to not o¤ering any more bribes in the future if one bribe is
rejected.
Let X and Y be the ruling and the competing party at time t, respectively.

The subscript c (for corrupt) denotes a ruling party that is willing to accept a
bribe when in charge, whereas the subscript h (for honest) denotes the willing-
ness to reject any bribe o¤er.
We follow the derivations of Shapiro and Stiglitz (1984.) For a type h, the

instant probability of turnover is constant in time, since it is just �. For this
reason, the present value of (present and future) expected utility is constant in
time for both parties X and Y . Considering an arbitrarily small time lapse T ,
party X faces the following characterization of such present value:

EUXh
= mT + e��T [�T � EUYh + (1� �T )EUXh

]

Using an approximation e��T � 1� �T , and taking the limit when T ! 0,
we obtain the so-called "asset equation"

�EUXh
= m� �[EUXh

� EUYh ]
Similarly, we obtain the asset equation of party Y when being of type h:

�EUYh = �[EUXh
� EUYh ]
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Solving this simple system, we obtain

EUXh
=

�+ �

�[�+ 2�]
m

EUYh =
�

�[�+ 2�]
m

Now, when parties engage into corruption, the probability of turnover �+��
is time-varying since � is so. We cannot take for granted that the present value of
expected utilities is constant over time. However, the briber pays the minimum
possible bribe, the one that keeps the ruling party indi¤erent between accepting
it or declining it. And, by declining the bribe, the present value of expected
payo¤s remains constant in time. Hence, in our model, both EUXc

and EUYc
are constant in time.
Present values of expected utilities are then characterized by the following

asset equations:

�EUXc
= ~m� (� + ��)[EUXc

� EUYc ]
�EUYc = (� + ��)[EUXc

� EUYc ]

The system of equations yields solution

EUXc
=

�+ � + ��

�[�+ 2(� + ��)]
~m

EUYc =
� + ��

�[�+ 2(� + ��)]
~m

We now make use of the indi¤erence condition, EUXc
= EUXh

, or

~m

m
=
(�+ �)(�+ 2�) + 2��(�+ �)

(�+ �)(�+ 2�) + ��(�+ 2�)

Given that ~m
m = 1 + (1 � �) bm � � srm ; the optimal bribe (conditional on

bribing) is

b =
�

1� �

�
sr +

��m

(�+ �)(�+ 2�) + ��(�+ 2�)

�
Notice that b is increasing in �. This leaves an instant payo¤ for the briber

of the following form:


(�) = (1� �)r � �sr � �

1� �

�
sr +

��m

(�+ �)(�+ 2�) + ��(�+ 2�)

�
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4 The optimal schedule of bribing

Based on the previous section, we make the following notational shortenings:

A = (1� �)r � �sr � �

1� � sr

B =
��m

1� �
a = (�+ �)(�+ 2�)

b = �(�+ 2�)

This notation allows us to write the briber�s instant payo¤ as a funtion of �


(�) = A�B �

a+ b�

We model the dynamic problem for the briber, thus we retake the notation
for time when necessary from now on. The briber designs her schedule of bribing
activity in order to maximize the following present value of present and future
payo¤s:

max
1Bribe

P =
Z 1

0

e�~�t1Bribe(t)
(�(t))dt

subject to �(0) = �0;
_�
� = ' if 1Bribe(t) = 1;

_�
� = �� if 1Bribe(t) = 0. Obviously,

1Bribe(t) takes value 1 when the briber decides to bribe, and value 0 when the
briber remains inactive instead.
This dynamic programming model is solved assuming that there is a station-

ary solution consisting of the repetition of activity-inactivity cycles. Thus the
solution involves a �rst stage in which depending on the initial resentment state
�0 we decide the resentment state �

� at which we initiate repetitive corruption
activity-inactivity cycles. In a second stage, depending on ��, we select the
optimal lenght T � of corruption activity in each repeated cycle. At the end, we
check that the choice of �� does not depend on �0, validating the stationary
solution approach.
The following lemma will be most useful when solving the problem.
Lemma 1: Let t be a moment at which corruption activity ceases and t0

its closest next moment at which the briber retakes corruption activity. If the
briber follows an optimal schedule, we must have

e�~�t
(�(t)) = e�~�t
0

(�(t0))

Proof: Suppose e�~�t
(�(t)) < e�~�t
0

(�(t0)). Consider an alternative sched-

ule that is identical to what the briber is already undertaking except for the
following change: instead of ceasing activity at t, she ceases activity at t � �,
and instead of retaking it at t0 she retakes activity at t0 � �. � is a very small
positive number.
Notice that log �(�) (and therefore the briber�s instant payo¤) is unchanged

in the time intervals [0; t � �] and [t0;1). Therefore, for � small enough,
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Figure 1: Illustrating the proof of Lemma 1. By stopping activity a bit earlier,
the briber substitutes periods with lower discounted payo¤ with periods with
higher discounted payo¤s.

e�~�t
(�(t)) < e�~�t
0

(�(t0)) implies that the suggested modi�cation improves

briber�s overall payo¤.
Suppose e�~�t
(�(t)) > e�~�t

0

(�(t0)). The payo¤-improving modi�cation

would consist of enlargening the activity interval to t + �, retaking corruption
activity at t0+�. We skip a more detailed argument since it would be a repetition
of the previous one. QED
The assumption ~� � � ensures that a unique solution (if any) exists for the

lenght of each cycle. The assumption A < B=b guarantees that a solution exists.
All this is shown through Lemma A1 at the Appendix.
We start with the solution for the optimal bribing activity time lenght T �

conditional on ��, the (optimally chosen) level of resentment at which corruption
activity restarts. Notice that the total lenght of each repeated activity-inactivity
cycle equals '+�

� T �. Since log � is piece-wise linear in t, it takes '
�T

� units of
time to go back to the initial resentment state, after a time lenght T � of bribing
activity.
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Let 	 � ~�'+�� . Fixing ��, T � maximizes the following function:

O(T ;��) �
1X
n=0

Z n'+�
� T+T

n'+�
� T

e�~�t
(��e't)dt

=
1

1� e�	T
Z T

0

e�~�t
(��e't)dt

� I(T ;��)

1� e�	T

where I(T ;��) denotes the former integral. The �rst order condition on T yields

OT (T
�;��) =

IT (T
�;��)

1� e�	T� �	e
�	T� I(T �;��)

(1� e�	T�)2

=
1

1� e�	T�
h
IT (T

�;��)�	e�	T
�
O(T �;��)

i
= 0

We now apply Lemma 1, which adapted to the current maximization problem
can be written as1

IT (T
�;��) � e�~�T

�

(��e'T

�
) = e�	T

�

(��)

This observation yields the simple

OT (T
�;��) =


(��)

	

Actually, we do not need to know the exact choice of T � in order to obtain
the briber�s optimal payo¤. We now study the �rst stage, that is, the calculation
of the optimal ��.
We assume that �0 is su¢ ciently high so that the briber optimally remains

inactive until resentment lowers down to ��. Otherwise the optimal schedule
would consist of being active until some time t0 at which the resentment state
takes some value �1 and then solve for the problem below (yet using �1 instead
of �0:) Since the optimal �

� (and also T �) is found to be invariant with respect to
�0 in the problem below, it is also invariant to the choice of �1 (and associated
t0.) The briber�s overall payo¤would be sensitive to this initial period of activity
yet the stationary part of the solution would not.
We choose �� to maximize

M(�;�0) � e�~��(�;�0)

(�)

	

1A more rigorous approach would include this equation as a constraint in the maximization
program and then it would construct a Lagrangian. Since this constraint is a condition for
maximization and not an exogenous constraint, the value of its associated Lagrange multiplier
would be zero, as the constraint does not interfere with the maximum attainable value of the
objective function. The solution to this problem would be equivalent to that presented in the
main text.

8



with �(�;�0) de�ned by
� � �0e���(�;�0)

or

e�~��(�;�0) =

�
�

�0

� ~�
�

thus

M(�;�0) =

�
�

�0

� ~�
� 
(�)

	

The �rst order condition is then

~�

�
A�B ��

a+ b��

�
� aB� ��

(a+ b��)2
= 0

Proposition 1: If ~� � � and A < B=b, then �� exists, it is unique, and it
yields a maximum for M(�;�0).
Proof: It stems from the proof of Lemma A1 in the Appendix.

M�(�;�0) =

�
�

�0

� ~�
� 1

	��
�

�
�
~�

�
A�B �

a+ b�

�
� aB� �

(a+ b�)2

�
If ~� � � and A < B=b, the expression in square brackets (equivalent to

�Dt(0;�) in the proof of Lemma A1) is monotonally decreasing and there is a
unique value of � (denoted with �0 in the aforementioned proof) that zeroes it.
Thus M(�;�0) reaches a maximum at �� = �0. QED
The optimal choice �� corresponds to a resentment state at which, if corrup-

tion activity ceased for an in�nitesimal time lenght, there would be no gain nor
loss in the briber�s instant payo¤ when she reactivates bribing. Note that �� is
independent from �0, agreeing with the assumption of a stationary solution.
But what if the cyclic behaviour depicted by Proposition 1, while possible,

is overrun by the alternative, namely starting bribing at some point in time
and not stopping from then on? Lemma A2 in the Appendix shows that the
alternative cannot yield higher present value of briber�s payo¤s.
Sensitivity to small increase in parameters
Comparative statics shows that the model behaves sensibly under variations

of the baseline parameters. Here is a list of the e¤ects of an increase of either
one of the considered parameters:
': It does not alter the choice of ��. However it reduces the time lenght

of each corruption activity period due to accelerated resentment. This has a
negative e¤ect on the briber�s payo¤ through an increase of 	.
�: It decreases ��. Its e¤ect on briber�s payo¤ is positive in all �anks: 1)

through a decrease of ��; which increases 
(�); 2) through an increase of
�
�
�0

� ~�
�

since �� < �0; 3) through a decrease of 	.
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~�: It increases ��. Its e¤ect on briber�s payo¤ is negative.
When bribing is always instantly bene�cial to the briber: a com-

ment
If we get rid of the assumption A < B=b, we actually obtain a dramatically

di¤erent result. Following the proof of Lemma A1, A � B=b gives inexistence
of a solution for the equation provided by Lemma 1, unless t = t0. That is,
Proposition 2: If ~� � � and A � B=b, the optimal schedule would consist

on being inactive until some time T 0, and then being active from then on without
further interruption.
Proof (Sketch): By Lemma A1 in the Appendix, if the briber stops bribing

activity at some moment t, it is never optimal to retake activity ever more. But
then, given that A � B=b ensures postivie instant payo¤s to an active briber no
matter the level of resentment �, it is suboptimal to stop activity at all, once
it has been initiated. The remaining question is when to initiate it for the �rst
and only time, that is, �nding the optimal T 0.

5 Conclusion and possible extensions

We have introduced a model that explains potential cyclicity in corruption
through time as a result of voters� cummulative resentment against it. Re-
sentment increases the risk of political turnover in case of corruption detection,
hence making bribing more expensive. If there is a resentment level at which
the briber does not extract instant positive payo¤when bribing the ruling party,
it turns out that the optimal schedule of bribing involves cycles alternating in-
activity with corruption activity. The model lies on solid literature basis, for
instance when calculating optimal bribes: it utilizes the Shapiro and Stiglitz
(1984) approach to shirking (corruption in our paper) in the labor market (here
the political arena).
The main assumption of the model is that the briber�s discount rate is higher

than the rate of forgiveness, that is, the rate at which the electorates reduces
its resentment during a period of no corruption. We do not have a conclusive
mathematical analysis when such assumption is violated. We can however pos-
tulate an intuitive hipothesis: when the inequality is reverted by a su¢ ciently
large amount, optimal bribing dynamics may not show cyclicity. That is, the
briber is su¢ ciently patient to wait until resentment is negligible enough, then
to engage into bribing activity from then on.
Among the many possible modi�cations of the model, there is a particularly

interesting variation that deserves a complete analysis in further research. We
refer to the possibility that resentment could have an impact not only on the
chances of political turnover, but also on the bipartisan system itself. At the
end, resentment cannot be diminished if an electoral turnover does not have a
lowering impact on corruption activity. It may well be that electoral turnout
could substantially diminish, giving rise to electoral space for third parties. This
lack of di¤erences in the attitude of moderate parties with respect to corruption
could explain in part the trend towards instability of bipartidism in modern
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democracies. It may be in the interest of a rational briber to abide by some risk
of a fall of bipartidism.
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6 Appendix

Lemma A1: Let ~� � �. For each value of �, there is at most one value t� > 0
such that


(�) = e�~�t�
(�e��t�)

Moreover, if A < B �
a+b� , there is a unique value �

0 for which a unique
solution to the previous equation exists if and only if � > �0. On the contrary,
if A � B �

a+b� , no � has an associated solution t� > 0.
Proof: De�ne D(t;�) � e�~�t
(�e��t). Since 
(�) is bounded above by A,

we have lim
t!1

D(t;�) = 0. The derivative is

Dt(t;�) = �~�D(t;�)� ��e�(~�+�)t
0(�e��t)

= �~�D(t;�) + aB�� e�(~�+�)t

(a+ b�e��t)2

When Dt(t;�) = 0 the second derivative is negative if
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(~�+ �)e�(~�+�)t(a+ b�e��t)2 > 2(a+ b�e��t)�b�e��te�(~�+�)t; or

(~�+ �)(a+ b�e��t) > 2�b�e��t; or

~�(a+ b�e��t) > �(a� b�e��t)

for which ~� � � is su¢ cient. Therefore, ~� � � implies that D(�;�) has a unique
local maximum. Since lim

t!1
D(t;�) = 0, we have that, if it exists, there is a

unique point t� > 0 such that D(t;�) = 
(�).
For the second statement. Note

Dt(0;�) = �~�
�
A�B �

a+ b�

�
+ aB�

�

(a+ b�)2

= B�

�
~�

a+ b�
+

a�

(a+ b�)2

�
� ~�A

Let z � 1
a+b� (and thus � =

1
bz �

a
b ) and let C(z) �

�
1
bz �

a
b

� �
~�z + a�z2

�
.

If C(z) is monotonally decreasing, then Dt(0;�) is monotonally increasing in �.
But

C 0(z) =
�1
bz2

�
~�z + a�z2

�
+

�
1

bz
� a
b

�
(~�+ 2a�z)

=
�~�
bz
� a�
b
+
~�

bz
+ 2

a�

b
� a~�
b
� 2a

2�

b
z

=
a(�� ~�)

b
� 2a

2�

b
z < 0

since � � ~� and z > 0. Thus Dt(0;�) is monotonally increasing in �. Note that
lim
�!1

Dt(0;�) > 0 i¤ A < B=b. (Incidentally, this proves the last statement of

the Lemma: inexistence of a solution when A � B=b). We conclude that there
is a cuto¤ value �0 for which Dt(0;�) > 0 i¤ � > �

0, provided A < B=b.
If � � �0, function D(�;�) always decreases. (Dt(t0;�) = 0 at some t0 > 0

implies a local maximum at t0 as we have seen; but then we reach a contradiction
with Dt(0;�) � 0 and lim

t!1
D(t;�) = 0.) Therefore there is no t� > 0 solving


(�) = e�~�t�
(�e��t�).
If � � �0, Dt(0;�) > 0 jointly with lim

t!1
D(t;�) = 0 establishes the existence

of a solution t� > 0 for the equation 
(�) = e�~�t�
(�e��t�) via the Intermediate
Value Theorem. Moreover we have seen that this value t� > 0 is unique. QED
Lemma A2: Suppose � � � and A < B=b. Take the (alternative) schedule

of being inactive from t = 0 to t = T and then being active from then on. The
latter schedule cannot yield higher present value of payo¤s to the briber, as
compared to the cyclic solution found by means of Proposition 1.
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Figure 2: Illustrating the proof of Lemma A1. For � high enough, Dt(0;�)
becomes positive, giving rise to the hump shape of the blue line.

Proof: Consider the alternative schedule above depicted. Using the short-
ening notation �(t; T ) = �0e

��T+'(t�T ), induced present value for the briber
is

U(T ) =

Z 1

T

e�~�t
(�(t; T ))dt

Noting that �T (t; T ) = ��+'
' �t(t; T ), the �rst order condition for maxi-

mization is

U 0(T �) = �e�~�
T�


(�(T �; T �))� �+ '
'

Z 1

T�
e�~�t
t(�(t; T

�))dt = 0

By integration by parts, we haveZ 1

T�
e�~�t
t(�(t; T

�))dt = �e�~�T
�

(�(T �; T �)) + ~�

Z 1

T�
e�~�t
(�(t; T �))dt

= �e�~�T
�

(�(T �; T �)) + ~�U(T �)

yielding

U(T �) = e�~�T
� 
(�0e

��T�)

	

where 	 � ~��+'� as in the main text.
If the �rst order condition is su¢ cient, we have

U(T �) � sup
�>0

e�~��(�;�0)

(�)
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with �(�;�0) de�ned as the unique solution to � � �0e���(�;�0). But note that
the right-hand side of the inequality is precisely the optimal value calculated in
the main text, through Proposition 1.
Finally, if the �rst order condition is not su¢ cient, the remaining candidate

is T � = 0. (The other extreme, T � = 1, implies zero present value.) If
such schedule is optimal from t = 0 to t = 1 with starting value �0, for
any T > 0, it constitutes an optimal schedule from t = 0 to t = 1 with
starting value �00 = �0e

'T . Or, in other words, such schedule is optimal for
any starting resentment state �0. But this constitutes a contradiction, since
lim�0!1

R1
0
e�~�t
(�0e

t)dt < 0 (since A < B=b.) QED
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